Proceedings of the Unmanned Ground Vehicle Technology VIl Conference, Part of the
2005 SPIE Defense and Security Symposium, Kissimmee, FL, March 28 - April 1, 2005.

A Standard Intelligent System Ontology

Craig Schlenoff™, Randy Washingtonb, Tony Barbera®, Chris Manteuffel”
*National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD USA 20899
°DCS Corporation, 1330 Braddock Place, Alexandria, VA 22314

ABSTRACT

The level of automation in combat vehicles being developed for the Army’s objective force is greatly
increased over the Army’s legacy force. This automation is taking many forms in emerging vehicles; varying
from operator decision aides to fully autonomous unmanned systems. The development of these intelligent
vehicles requires a thorough understanding of all of the intelligent behavior that needs to be exhibited by the
system so that designers can allocate functionality to humans and or machines. Tradition system specification
techniques focused heavily on the functional description of the major systems and implicitly assumed that a
well-trained crew would operate these systems in a manner to accomplish the tactical mission assigned to the
vehicle. In order to allocate some or all of these intelligent behaviors to machines in future vehicles it is
necessary to be able to identify and describe these intelligent behaviors in detail.

In this paper, we describe an effort to develop an IS ontology using Protégé. The goal of this effort is to
develop a common, implementation-independent, extendable knowledge source for researchers and
developers in the intelligent vehicle community that will:

e Provide a standard set of domain concepts along with their attributes and inter-relations

e Allow for knowledge capture and reuse

e Facilitate systems specification, design, and integration , and

e Accelerate research in the field.

This paper describes the methodology we have used to identify knowledge in this domain and an approach to
capture and visualize the knowledge in the ontology.

Keywords: intelligent vehicle, ontology, OWL-S, Army, Protégé

1. INTRODUCTION

The level of automation in combat vehicles being developed for the Army’s objective force is greatly increased over the
Army’s legacy force. This automation is taking many forms in emerging vehicles; varying from operator decision aides
to fully autonomous unmanned systems. The development of these intelligent vehicles (IVs) requires a thorough
understanding of all of the intelligent behavior that needs to be exhibited by the system so that designers can allocate
functionality to humans and/or machines. Tradition system specification techniques focused heavily on the functional
description of the major systems of a vehicle and implicitly assumed that a well-trained crew would operate these
systems in a manner to accomplish the tactical mission assigned to the vehicle. In order to allocate some or all of these
intelligent behaviors to machines in future vehicles, it is necessary to be able to identify and describe these intelligent
behaviors in detail.

The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has funded DCS
Corporation and the National Institute of Standards and Technology (NIST) to explore approaches to model the

* craig.schlenoff@nist.gov; phone 301-975-3456, fax: 301-990-9688

drussell
Proceedings of the Unmanned Ground Vehicle Technology VII Conference, Part of the 2005 SPIE Defense and Security Symposium, Kissimmee, FL, March 28 - April 1, 2005.

intelligent vehicle domain with explicit representation of intelligent behavior. This exploration included the analysis of
modeling languages (i.e., UML, DAML, OWL) as well as reference architectures. A major component of this effort has
been the development of an Intelligent System (IS) Ontology.

NIST and DCS Corporation have taken the view that an intelligent vehicle can be viewed as a multi-agent system, where
agents can represent components within the vehicle (e.g., a propulsion system, a lethality system, etc). In addition, an
IV, as a whole, can serve as a single agent within a troop, platoon, or section, where multiple I'Vs are present. In order for
a group of agents to work together to accomplish a common goal, they must be able to clearly and unambiguously
communicate with each other without the fear of loss of information or misinterpretation. We have used the IS Ontology
to specify a common lexicon and semantics to address this challenge.

In this paper, we describe the joint effort currently being performed by DCS Corporation and NIST to develop an
intelligent system ontology using Protégé. The goal of this effort is to develop a common, implementation-independent,
extendable knowledge source for researchers and developers in the intelligent vehicle community that will:

e Provide a standard set of domain concepts along with their attributes and inter-relations;
e Allow for knowledge capture and reuse;

o Facilitate systems specification, design, and integration, and;

e Accelerate research in the field.

This paper describes the methodology we have used to identify knowledge in this domain and an approach we have used
to capture and visualize the knowledge in an ontology. Section 2 describes RCS and its underlying methodology that we
use to determine the information requirements to model in the ontology. Section 3 describes the IS Ontology. Section 4
discusses some thoughts on how the ontology could be applied towards the control of intelligent vehicles. Section 5
describes our current status and concludes the paper.

2. THE REAL-TIME CONTROL SYSTEM
2.1. The Methodology

One of the first steps in any ontology development effort is to identify the information requirements that are necessary to
be modeled in the ontology. For this effort, we used the RCS (Real-time Control System) methodology for determine
these requirements.

RCS was developed by NIST for the control of intelligent systems, and has recently been used to control intelligent
vehicles within military environment [1]. The RCS methodology concentrates on the task decomposition as the primary
means of understanding the knowledge required for intelligent control. This approach is shown in Figure 1 and begins
with the knowledge “mining” activities to retrieve knowledge from subject matter experts (SMEs). The gathering and
formatting of this knowledge can be summarized in six steps, each of which follows from the knowledge uncovered by
the previous steps:

1) The first step involves an intensive analysis of domain knowledge from manuals and SMEs, especially using
scenarios of particular subtask operations. The output of the effort is a structuring of this knowledge into a task
decision tree form of simpler and simpler commands (actions/verbs) at simpler and simpler levels of task
description.

2) This step defines the hierarchical organization of agent control modules that will execute these layers of
commands in such a manner as to reasonably accomplish the tasks. This is the same as coming up with a
business or military organizational structure of agent control modules (people, soldiers) to accomplish the
desired tasks. This step forces a more formal structuring of all of the subtask activities as well as defining the
execution structure.

TASK ANALYSIS MAP to AGENT

to Create Task o ——— ARCHIIECTURE

A e (Executing| (ConductRightFlankRecon)
-, Decomposition Tree
] P I KNOWLEDGE
-] VALUE
/ ""AE‘_fE JUDGMENT
- SENSORY WORLD HAVIOR
DOT Driving Manuals PROCESSIN MODEL “°J‘\
ARMY Field Manuals
{(Platoon “B” Sectis
enson T Control
T Module) (Executing)

Domain Experts

“ConductWaterObsRecon”
i . i o Plan State-Table
Task Decomposition Tree Hierarchical Organization of

(Route Reconnaissance Example) Agent Control Modules ConductRightFlankRecon
DETERMINE SENSOR election Conditions ‘ c#mt:::‘:::-:::m
PROCESSING REQUIREMENTS

AND RESOLUTIONS Heresbetediccen 7

[Dotiepeisaos [Contuctooionecon /
[E— [Conductaen {

PLAN SELECTION

Saturated Plant
Ground Height
| 618" LongLeafGrasses - very flat, long green

l e
| e
| =
! - d " “DETERMHNE ANTECEDENT
Y [P : e e WORLD STATES Conducty:
| large feathery panicies (elongated NowPlan Rl
| clusters flowers. m:jc...d..m..m...,mmgm
| 39 “Bulrushes - tall tan-to-green stems, with 2 SetupReport&NewControlMeasures
dark brown cylindrical seed heads. 1 vens_L Vehs ReconToFarFlank
I that explode into white down, long FlowingWater xm::\lhnllﬂhlmmlﬁlr!m
Cattails I opyaon sword shaped mpe, Zi:?:'ﬁ?:,‘:,:f}l“;‘iﬂ‘""’>smmnc..»c..‘. S0 SetupReport&NewControleasures
b Foat wWater Ui Ve ErodedEarthEmbankments 2 Vehs_NoBypassOnFlank Vol MoveTactcalyToContrlPoint
Six Foat Teaves with white f — Vehs-WovaTactcaly Togonabaint
Object Groupings and of water Eemmtevaininoatrme oo Srome >PnnM=kwelm=d 1 Vehs_PossibleFordbetected | Vehd. Conductbordmcon
Classifications SoumindBySuampliash Vend-VisualyCloaronsiaci Farside
. IDENTIFY OBJECTS and Smhcrttts ndaarivar g 55 SetupRoportaNowCantroaasures
Objects and Maps foeeiiy RiverDetected et Vehe-Conaucmosralieduonuaich
. THEIR RELEVANT ATTRIBUTES || cuumem Vena-ViualylearomeiacieFaride
Features and Attributes ST SetupControlMeasures
o : el el Vehe-Conductiravelimgovervatch
Segmented Groupings CrieToNove MudDetected Vens ViualyClaarObace Fargie
e o vens ST SotupfaportaControlMossures
I I I I I I Objects & Attributes World States Situations Vehs Vissalyatonou
1 Input Conditions Output Commands
ColorCameras LADAR PLAN STATE-TABLE
Radar Stereo FLIR Nav
SENSORY WORLD MODEL BEHAVIOR
PROCESSING KNOWLEDGE GENERATION

Figure 1 - RCS Methodology

3) This step clarifies the processing of each agent’s input command through the use of rules to identify all of the
task branching conditions with their corresponding output commands. Each of these command decompositions
at each agent control module will be represented in the form of a state-table of ordered production rules (which
is an implementation of an extended finite state machine (FSM)). The sequence of simpler output commands
required to accomplish the input command and the named situations (branching conditions) that transition the
state-table to the next output command are the primary knowledge represented in this step.

4) In this step, the above named situations that are the task branching conditions are defined in great detail in terms
of their dependencies on world and task states. This step attempts to define the detailed precursor states of the
world that cause a particular situation to be true.

5) In this step, we identify and name all of the objects and entities together with their particular features and
attributes that are relevant to defining the above world states and situations.

6) The last step is to use the context of the particular task activities to establish the distances and, therefore, the
resolutions at which the above objects and entities must be measured and recognized by the sensory processing
component. This step establishes a set of requirements and/or specifications for the sensor system at the level

of each separate subtask activity.

More details about this methodology can be found in [2].

The output of this methodology is a set of information requirements, specifically, information about tasks (step 1), agents
(step 2), plans to accomplish tasks (step 3), conditions and situations (step 4), environmental entities (step 5), and

attributes of those entities (step 6). These information requirements serve as the input for the ontology described in the
Section 3.

2.2. The Scenario

Initial efforts has focused on the knowledge derived from the task analysis of scenarios of a light cavalry troop’s
execution of a Conduct Tactical Road March to Assembly Area mission. In particular, we have analyzed the part of this
mission that focuses on the route reconnaissance component by the Scout Platoon. This is done through scenarios that
are examined at more and more detailed levels starting at the Troop Commander Level, which will perform a number of
planning activities to better identify the priority information items of the route, to define the march column organization,
and to specify the formation and movement technique. The Troop Commander will then dispatch a scout platoon to
conduct a route reconnaissance. The scout platoon leader will do finer level planning, organizing the platoon’s sections
of vehicles and assigning commands to each section leader to do reconnaissance of different areas along the route while
maintaining security. Each section leader will evaluate the environment to provide detailed tactical goal paths for each
of his vehicles, coordinating their motion by the use of detailed motion commands to control points along with security
overwatch commands. Each vehicle, in turn, performs detailed sensory processing to carry out careful analysis of the
terrain in context of the mission, security, stealth, and traversability. Each vehicle then decides its optimal real-time
path. If some aspect, such as a water obstacle, constrains the vehicle from following the general goal path laid out by the
section leader, the vehicle does reconnaissance, moves to a secure point, and reports to the section leader. If the
constraint affects the operation of the entire section (e.g. the water obstacle stretches across the entire area that the
section is assigned), then the section leader coordinates his vehicles to do reconnaissance and to take up secure positions.
The section leader then reports to the platoon leader.

These scenarios provide a rich set of knowledge of organizational structure, activities, commands, rules, status, sensory
processing, objects and world states to be recognized, adaptation to events, and procedures required for successful

execution.

2.3. Extracting Information Requirements

Although the RCS approach uses state tables to represent the information, the representation within the ontology does
not necessarily need to be captured within state tables as long as no information is lost. Table 1 shows a small piece of a

Conduct Tactical Road March To Assembly Area

Condition

Action

S4 Scout Platoon Ready to Conduct Route Recon

S5 Scout Platoon Conduct Route Reconnaissance

S5 Quartering Party Ready to Organize Assembly Area

S6 Quartering Party Follow Recon Platoon to Assembly
Area

S6 Quartering Party Clear of Start Point

S7 Main Body and Trail Party Prepare for Road March

S7 Main Body and Trail Party Recon to Start Point Done

S8 Troop Prepare Detailed Movement Plans

S8 Scout Platoon Route Recon Done

S9 Scout Platoon Establish Assembly Area Security

S9 Quartering Party at Release Point

S10 Quartering Party Conduct Area Recon of Assembly
Area

S10 Quartering Party Area Recon of Assembly Area
Done

S11 Quartering Party Organize Assembly Area

S11 Quartering Party Status Assembly Area Suitable

S12 First Main Body Unit Move Into Road March
Formation

S12 Main Body Unit At Start Point

S12 Main Body Unit Execute Tactical Road March
Next Main Body Unit Move Into Road March Formation

S12 Last Main Body Unit at Start Point

S13 Main Body Unit Execute Tactical Road March
Trailing Party Move Into Road March Formation

Table 1 - Excerpt from a RCS State Table

state table representation that was developed from the RCS methodology for the scenario described above. The left
column shows the condition that must be true for an action to occur. The notation S# notates a state value. For example,
in the first line, the system must be in state 4 and the condition “Scout Platoon Ready to Conduct Route Recon” must be
true for the action “Scout Platoon Conduct Route Reconnaissance” to occur. When the action is executing, the system
will change over to state 5 (S5).

3. THE IS ONTOLOGY

3.1. The Ontology Language

The OWL-S upper ontology [8] was used as the underlying representation for the IS Ontology in order, among other
reasons, to document RCS in a more open XML (eXtensible Markup Language) format. OWL-S is a service ontology,
which supplies a core set of markup language constructs for describing the properties and capabilities of services in an
unambiguous, computer-intepretable format. OWL-S, which is being developed by the Semantic Web Services arm of
the DARPA Agent Markup Language (DAML) program, is based on the OWL [5]. OWL is an extension to XML and
RDF (Resource Description Framework) schema that defines terms commonly used in creating a model of an object or
process. OWL is a World Wide Wide Consortium (W3C) recommendation, which is analogous to an international
standard in other standards bodies.

OWL-S is structured to provide three types of knowledge about a service (Figure 2), each characterized by the question it
answers:

e What does the service require of the user(s), or other agents, and provide for them? The answer to this question is
given in the “profile." Thus, the class SERVICE presents a SERVICEPROFILE

e How does it work? The answer to this question is given in the “*'model." Thus, the class SERVICE is describedBy a
SERVICEMODEL

e How is it used? The answer to this question is given in the "‘grounding." Thus, the class SERVICE supports a
SERVICEGROUNDING.

Later in this paper, we will show how we use these OWL-S concepts to model a tactical behavior for an intelligent
vehicle.

3.2. Tools

Before an ontology can be built, a decision must be made as to which tool (or set of tools) should be used to enter,
capture, and visualize the ontology. For this work, we decided to use Protégé [7]. Protégé is an ontology editor, a
knowledge-base editor, as well as an open-source, Java tool that provides an extensible architecture for the creation of

provides

presents SUpports

DescribedBy
ServiceProfile 1 ServiceGrounding
What the ServiceModel How to
service does access it

How it works

Figure 2 - OWL-S Ontology Structure

External Service Request by a process Troop
P e Commander

Platoon j Platoon) Platoon)
Leader eeoo Leader oo Leader
Agent Age \ Agent
-
|
Section Section Section
Lead o oo Lead Service oo Lead
Agent Agent Agent
Vehicle Vehicle Vehicle -
Commander eee |Commander (Service ®® [Commander
Agent [—Agent
Lethality ([Surveillance Mobility Survivability Supp}b
System System System Service stem System
Agent Agent | | Agent
Automotive | Auxiliary Propulsion Localization Navigamb
Subsystem Subsystem Subsystem ubsystem Subsystem
Agent Agent Age Agent
Speed < Steer Engine Fransfer/XFer ParkBrake
Controller @ Controller @ Controller Controller Controller
Agent Agent Agent Agent Agent
Vehicle manned by a Section L
leader would contain each Engine
Of these elem ents Component

Figure 3 - Agent Hierarchy

customized knowledge-based applications. Protégé was chosen due to its strong user community, its ability to support
the OWL language (discussed below), its ease of use (as determined by previous experience), and its ability to be
extended with plug-ins such as visualization tools (also discussed below).

3.3. Using OWL-S To Model the Scenario

Both the RCS methodology and the OWL-S upper ontology are based on the concept of agents, service that the agents
can perform, and procedures that the agents follow to perform the services. As such, there is a very clean mapping
between the information that comes out of the RCS methodology and the OWL-S upper ontology. In this section, we will
describe that mapping.

The first step involved setting up the agent hierarchy. In the domain we are dealing with (a light Calvary troop), we
designed an agent hierarchy as shown in Figure 3. The agent architecture is very similar (if not identical) to the way that
the Army organizes it soldiers, where troops are composed of platoon, which are composed of sections, which are
composed of vehicles. Each vehicle is composed of the a lethality system, a surveillance system, a mobility system, a
survivability system and a support system. A mobility system is composed of an automotive system, and auxiliary
system, a propulsion system, a localization system, and a navigation system. Each propulsion system is composed of
speed controller, steer controller, engine controller, transfer controller, and parking brake controller. An engine controller
is composed of engine components. Each box in Figure 3 is considered an agent (with the possible exception of the
engine component box), and agents can be composed of other agents. In OWL-S 1.0, we modeled all of these agents as
subclasses of the /GVAgent class, which is a subclass of the ServiceResource class defined in the OWL-S upper
ontology. We also specified, in the constraints, who each agent can send external service requests to and who they can
received them from. External service requests were modeled as a subtype of the Effect class, and specify that the effect of
a process was a call to another agent requesting that they perform an activity.

The next step involved setup up the services and processes. Any activity that can be called by another agent is considered
a service in OWL-S. Any activity that the agent performs internally that cannot be externally called is called a process.
As such, we model “Conduct A Tactical Road March to an Assembly Area” as a service that is provided by a Troop
agent (and can be called by a Squadron agent). The Troop agent can call services provided by other agents, such as

shown by the first action in Table 1 (Scout Platoon Conduct Route Reconnaissance). In this example, we defined a
service called “Conduct Route Reconnaissance” and associated that service with the Scout Platoon agent.

The state table in Table 1 shows an excerpt of the process that an agent (in this case, the Troop agent) should follow
when executing the “Conduct a Tactical Road March to Assembly Area” service. This process is captured in OWL-S as a
process model (which is a subtype of ServiceModel as described in Section 3.1). The process model includes the steps
that must be accomplished to carry out the service, and the ordering constraints on those steps. Each step can be
preformed internally by the agent or could involve making an external service request to another agent. The ordering of
the steps in Table 1 is shown using the next possible state indications (S#). For example, the second to last action in
Table 1 reads “S12 Main Body Unit Execute Tactical Road March, Next Main Body Unit Move Into Road March
Formation.” The S12 indicates what the next possible state could be after this action is executed. On the left side of the
table, there are two states that start with S12 (Main Body Unit At Start Point and Last Main Body Unit at Start Point).
One of these conditions has to be true after the “S12 Main Body Unit Execute Tactical Road March” action completes
executing. If the last main body unit is at the start point, then the latter state will be true. If not, then the former state will
be true. This continues until the latter state is true and the state table moves to the next state (S13). One can model this
as a repeat-until sequence (the loop continues until the last main body until is at the start point). OWL-S provides a
number of control constructs that allow you to model just about any type of process flow imaginable. They include
sequence (a linear ordering of processes), split (concurrent execution of processes), split and join (concurrent execution
of processes with synchronization), unordered (no specification of ordering constraint), choice (allows for the choice
between different processes), if-then-else (allows for conditional execution of processes), iterate (for the recursive
iteration of a process) and repeat-until (to specify an iteration that repeats until a condition is met). We have found that
the control constructs provided in OWL-S have been sufficient to model all of the behaviors we are explored.

Not shown in Table 1 but explained in Section 2, environmental entities and their attributes are another primary output of
the RCS methodology. These include other vehicles, bridges, vegetation, roads, water bodies; anything that is important
to perceive in the environment relative to task that is being performed. We have started to build an environment ontology
in OWL-S from the bottom up (i.e., including only entities that prove to be important based on the output of the RCS
methodology). However we are currently starting to explore existing environment ontologies that currently exist to see
what we can leverage.

3.4. Conditions

Also not shown in Table 1 but explained in Section 2, conditions are a primary information output of the RCS
methodology (Step 4 in Section 2.1). The series of conditions shown in Figure 1 explain how a given state in the state
table is determined to be true. OWL-S 1.0 provides a stub for conditions, but does not elaborate on how they are
constructed.

Considerable effort has been expended to explore different mechanisms for representing conditions, ranging from
tailoring existing specification to developing new concepts. The scenario and methodology described earlier in this paper
introduce a few aspects of conditions that are not typically considered in existing representations, namely:

e The truth-value of a condition may be based on an unspecified combination of sub-conditions. Although this
specification will be elaborated in the future, at this point, we simply want to say that we know the factors that
contribute to the overall truth-value of a condition but we do not yet know how to put them together. For example, in
Figure 4, the Marsh Detected condition is evaluated to true is some combination of Water Covered Land, Extensive
Marsh Vegetation, Major Ground Deformation, Marsh Birds, and Traction Slip exists. It is possible that the
existence of only one of these sub-conditions would cause the Marsh Detected condition to be evaluated to true. It is
also possible that the existence of many of these sub-conditions does not necessary imply that Marsh Detected is
true. But what we do know is that the sub-conditions listed below are the important things for us to evaluate to
determine whether a marsh exists. As the project progresses, this detailed relationship will be determined. Until
then, we simply want to state that the sub-conditions hold some unspecified relation to the truth-value of Marsh
Detected.

e The truth-value of a condition may be based on the truth-value of other conditions which may be based on the truth
value of other conditions, etc. For example, in Figure 4, Marsh Detected is true if some combination of Water
Covered Land, Extensive Marsh Vegetation, Major Ground Deformation, Marsh Birds, and Traction Slip is true.

Plant MostlyTrees, SomeBushes

Height ExtensiveWaterSurfaceVisible \
SlowMovingWaterCoveredLand — Swamp Detected

6-18" LonglLeafGrasses - very flat, long green

SignificantTractionSli
leaves-purple/rose/yellow flowers. d P

MajerGroundDeformation

6-48" Sedges - trangular tan/green stem plants

papyrus, narrow green to tan grass- StagnantWater
like leaves, spikelets of inconspicuou OrganicMaterial On¥WaterSurface
tan-to-yellow-to-white flowers. IndeterminantGroundLevel — BogDetected
Mosses,Evergreens,andShrubs
1-6* Reeds - tall, woody, thin, round, hollow

SignificantTractionSlip

xtesiveMarshVegetation

jointed (tan-to-green) stem plants,
long narrow green blade leaves,
large feathery panicles (elongated
clusters of tanfwhite/purple flowers k

along main stem). o IIALLON MarshDetected
3 . MarshBirds

3-9 Bulrushes - tall tan-to-green stems, with TractionSlip

dark brown cylindrical seed heads

that explode into white down, long

flat green sword shaped leaves, FlowingWater

cattails. NarrowWidth,IndeterminantLength

NonVegetatedWaterinMiddle —StreamDetected

Float water Lilies - very large floating green ErodedEarthEmbankments

leaves with white flowers.
Figure 4: Condition Example

Furthermore, Extensive Marsh Vegetation is true if some combination of Long Leaf Grasses, Sedges, Reeds,
Bulrushes, and Water Lilies exist. This chaining can go on for multiple levels.

OWL-S 1.1 (release in October, 2004) allows mechanisms to used external languages (e.g., Semantic Web Rules
Languages (SWRL) [6], and others) to specify conditions. Initial experiments with SWRL [6] has show very limited
successes in representing the two challenges discussed above. Experiments with new condition ontologies have shown
more success, but offer the disadvantage of not being conformant with more well-know efforts. This is still an area of
active research within this project and future publications will describe results as they occur.

3.5. Organizing the Knowledge

Due to the shear size of the ontology, we have taken the approach of organizing the knowledge into namespaces. A
namespace is a tag prefixed to the name of the class or instance that separates the knowledge in the ontology into
“pieces,” where each piece represent a group of like concepts. Numerous namespaces can be imported into a single
ontology and a single namespace can be reused in multiple ontologies. The contents of namespaces are often stored in a
separate file.

For this effort we have identified a set of five high-level namespaces that build off of the concepts presented in OWL-S
(shown in Figure 5), namely:

e Basic — data structures to capture abstract, highly reusable concepts (e.g., location, spatial relations)

e Behavior — data structures which help to describe services, agents, and conditions (e.g., and-conditions, or-
conditions, external service requests)

e Military Concepts — data structures to capture common concepts within military procedures (e.g., assembly area,
control points, troops)

e Environment — data structures to capture environmental concepts (e.g, water bodies, shrubs, weather conditions)

e Military Equipment — data structures to capture information about the equipment that the military uses (e.g.,
communication devices, weapons, measuring devices)

Ilwww damlor
services/owl-s/1.0/

NS trpldr_c2v.owl
i pltidr_mgv.owl ||
trpldr_trm.owl
Model of a Troop Leader Intelligent Vehicle bnedr_c2v.owl

Figure 5: Namespaces Figure 6: OWL-S Visualization Tool

e | B AN G A o] S mge i oo e wge | e o] wes] v e CFTmea sam

In addition, we have adopted the approach that we would define a separate namespace for every agents’ services and
processes in every tactical behavior. For example, in the “Conduct a Tactical Road March to an Assembly Area” tactical
behavior, we have defined the services and corresponding process models for most of the agents shown in Figure 3. We
would namespaces have called Troop-ConductTacticalRoadMarchToAA, Platoon-ConductTacticalRoadMarchToAA,
etc.

3.6. Visualization of the Ontology

While presenting this work to our funding sponsors, it quickly became obvious that we needed a better way to display
the information in the ontology. A whole bunch of windows with a small amount of text in each didn’t work well. As
mentioned earlier, one of the reasons we chose Protégé was its ability to be extended using “plug-ins.” A plug-in is a
piece of code that performs a given functionality that can be incorporated into Protégé. We developed a visualization tool
based upon the open source GraphViz program [4] that allows us to graph OWL-S models. A snapshot of the
visualization tool is shown in Figure 6. In this figure, boxes represent either composite processes (represented by the
double box), or simple processes (represented by the single box). Composite processes can be decomposed into an
underlying process model. In the figure, the Composite Task C box on the right side of the figure was expanded to the
process model on the left side of the figure. The dark arrows represent process flow and the light arrows represent data
flow. Large diamonds represent decision points, usually where a condition is evaluated. Small diamonds show where two
flows join together. Other shapes represent control flow, such as splits, joins, while, and repeat statements.

4. HOW THE ONTOLOGY COULD BE USED

Initial application of the IS Ontology have focused on the control of autonomous vehicles. The ontology was originally
built to capture all pertinent information about tactical behaviors in an unambiguous and computer-interpretable format
such that his information could be embedded into an autonomous vehicles control system to enable that vehicle to
perform tactical behaviors without the need for direct human supervision. Figure 6 shows some initial thoughts on how
the ontology could be applied to the control of autonomous vehicles.

The concept on the left side of the figure has been described through the course of this paper, namely, using the RCS
methodology and the OWL-S specification to develop the ontology. However, this ontology still needs to be parsed and
used. That is where the development of the OWL-S Interpreter Rules comes in. These interpreter rules describe the
proper way to interpret the OWL-S constructs, including how to capture and use the sequence information, how to

e = Environment

s Feedback Tactical

. _ Instances Behaviors
\ ‘CUP S g s s

IGV Ontology

Task Allocation
and Optimization r _f; Soar Technology
Inference Engines
ows OWL-S Interpreter
Rules

Figure 6: Applying the IS Ontology to the Control of Autonomous Vehicles

determine the proper decomposition of processes, how to evaluate conditions, etc. This would only have to be developed
once, and then would be available to be used for all future ontologies that conform to the OWL-S specification. Although
the ontology describes the tasks that must occur when performing a tactical behavior, it does not describe whether the
agent that is performing those tasks is human or machine. Due to the limited capabilities of intelligent vehicles, a
determination must be made as to what the vehicle is able to perform and what the human must do. Also, the ontology is
developed to clearly and unambiguously specify the knowledge representations for tactical behaviors, not to optimize the
process. The process of assigning tasks to humans and machines and to optimize the process is represented by the Task
Allocation and Optimization section of the figure. This is a difficult task, and one that requires much human intervention.
Once this is done, the results of the OWL-S Interpreter and the task allocation and optimization are envisioned to be fed
to an inference engine', such as the ones shown in the figure. The inference engine uses this information as it underlying
knowledge to build up its rule-based and known facts about the world. Then, as the intelligent vehicle is performing its
activities and perceives and learns more information about the world, it writes this information into its world model. The
existence of this knowledge causes rules in the knowledge base to fire, thus invoke behaviors that are commanded to the
vehicle. The vehicle performs these behaviors, and in doing so, perceives and learns more information about the world.
This cycle continues until the mission is complete.

Figure 6 paints a fairly simplistic picture of how the ontology can be applied. Though the details in implementing it
would make the figure much more complicated, it is believed that the overall process flow, as shown, would be relatively
unchanged.

5. CURRENT STATUS AND FUTURE WORK

In this paper, we describe an ongoing effort to develop an IS Ontology for the purpose of capturing knowledge about
tactical behaviors to facilitate intelligent vehicle development and execution. The ontology is being built using the
Protégé environment and is based upon the OWL-S upper ontology.

! Certain commercial software and tools are identified in this paper in order to explain our research. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the software tools identified are
necessarily the best available for the purpose.

To date, service models have been developed for the following agents: troop, platoon, section, vehicles, mobility,
propulsion, engine controller, engine, surveillance, and sensor subsystem (as shown in Figure 3). All of the service
models are currently focused solely on the scenario described in Section 2.2. We have only done one strand of this
scenario (e.g., we elaborated one service in each level of the hierarchy, although there were almost always many services
that each agent may have to perform to accomplish the overall goal of “Conducting a Tactical Road March to An
Assembly Area.”) Also, this one scenario represents one of hundreds, if not thousands, of tactical behaviors that an army
soldier is expected to be able to perform. It is clear that, as the details of this scenario is further modeled and more
scenarios are explored, the size of the ontology will grow to be very large. At the time when this document was written,
we have modeled 489 classes, 213 properties (attributes), and 2674 instances.

Through the development of this ontology, it has become apparent that the applications of a “standard” and well-defined

representation of tactical behaviors are far-reaching above and beyond that of controlling autonomous vehicles. Some of

the potential communities that have been identified, along with their associated benefit in such a representation, include:

e Material Acquisition Community: Documenting behavioral requirements for manned, aided, and unmanned systems;
and analyzing the completeness/consistency of requirements and predicting the performance of systems developed
to meet those requirements.

e Vendor Community: Unambiguously interpreting behavioral requirements; and rapid development of
simulation/prototypes to evaluate design alternatives.

e Training Community: Availability of machine-readable sources of tactical knowledge for automatic generation of
training materials and training scenarios

Initial results of this effort have shown that:

e Ontologies appear to be an excellent approach for capture information in a computer-interpretable format about
tactical behaviors

e The RCS methodology has provided information requirements to the ontology at a level of detail that greatly
facilitates the ontology development process. A large part of building any type of ontology is extracting the detailed
information requirements that must be represented. The RCS methodology directly addresses this need.

e OWL-S provide a very nice mapping to the RCS methodology and serves as an excellent upper ontology to
represent tactical behaviors

ACKNOWLEDGEMENT

This work was sponsored by U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC).

REFERENCES

Albus, J., "4-D/RCS: A Reference Model Architecture for Demo I11," NISTIR 5994, Gaithersburg, MD, 1997.
Barbera, T., Messina, E., Huang, H., Schlenoff, C., and Balakirsky, S., "Software Engineering for Intelligent
Control Systems," Kunstliche Intelligenz Journal: Special Issue on Software Engineering for Knowledge-based
Systems, Vol. 3, No. 4, 2004, pp. 22-27.

3. Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., and Simeon, J., "XQuery 1.0: An XML Query
Language," W3C Web page: http://www.w3.org/TR/xquery/, 2004.

4. Gansner, E. and North, S., "An Open Graph Visualization System and Its Applications," Software - Practice and
Experience, Vol. 00, No. S1, 1999, pp. 1-5.

5. Harmelen, F. and McGuiness, D., "OWL Web Ontology Language Overview," W3C web site:
http://www.w3.0rg/TR/2004/REC-owl-features-20040210/, 2004.

6. Horrocks, 1., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., and Dean, M., "SWRL: A Semantic Web Rule
Language Combining OWL and RuleML: Version 0.5," DAML website: http://'www.daml.org/2003/11/swrl/,
2003.

7. Schlenoff, C., Washington, R., and Barbera, T., "Experiences in Developing an Intelligent Ground Vehicle (IGV)
Ontology in Protégé," Proceedings of the 7th International Protégé Conference, Bethesda, MD, 2004.

8. The OWL Services Coalition, "OWL-S 1.0 Release," http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

N —

